
Recitation – week 9

CS 1550

Introduction to Operating Systems

Pranut Jain

Disclaimer

• Slides originally by Andrea for Dr. Remzi H. Arpaci-Dusseau,

UNIVERSITY of WISCONSIN-MADISON

Motivation for

Virtualization
Uniprogramming: One process runs at a time

User

Process

OS
Physical

Memory

0

2n-1
Stack

Code

Heap

Address

Space

Disadvantages:
• Only one process runs at a time

• Process can destroy OS

Multiprogramming

Goals

Transparency

• Processes are not aware that memory is shared

• Works regardless of number and/or location of processes

Protection

• Cannot corrupt OS or other processes

• Privacy: Cannot read data of other processes

Efficiency

• Do not waste memory resources (minimize fragmentation)

Sharing

• Cooperating processes can share portions of address space

Abstraction: Address SPace

Address space: Each process has set of addresses that map to bytes

Problem:

How can OS provide illusion of private address space to each process?

Review: What is in an address space?

Address space has static and dynamic components

• Static: Code and some global variables

• Dynamic: Stack and Heap

Stack

Code

Heap

0

2n-1

Motivation for

Dynamic Memory
Why do processes need dynamic allocation of memory?

• Do not know amount of memory needed at compile time

• Must be pessimistic when allocate memory statically

• Allocate enough for worst possible case; Storage is used inefficiently

Recursive procedures

• Do not know how many times procedure will be nested

Complex data structures: lists and trees
• struct my_t *p = (struct my_t *)malloc(sizeof(struct my_t));

Two types of dynamic allocation
• Stack

• Heap

Stack Organization
Definition: Memory is freed in opposite order from allocation

alloc(A);

alloc(B);

alloc(C);

free(C);

alloc(D);

free(D);

free(B);

free(A);

Simple and efficient implementation:
Pointer separates allocated and freed space

Allocate: Increment pointer

Free: Decrement pointer

No fragmentation

Where Are stacks Used?

OS uses stack for procedure call frames (local variables and parameters)

main () {

int A = 0;

foo (A);

printf(“A: %d\n”, A);

}

void foo (int Z) {

int A = 2;

Z = 5;

printf(“A: %d Z: %d\n”, A, Z);

}

Heap Organization

Advantage

• Works for all data structures

Disadvantages

• Allocation can be slow

• End up with small chunks of free space - fragmentation

• Where to allocate 12 bytes? 16 bytes? 24 bytes??

• What is OS’s role in managing heap?

• OS gives big chunk of free memory to process; library manages individual allocations

Definition: Allocate from any random location: malloc(), new()

• Heap memory consists of allocated areas and free areas (holes)

• Order of allocation and free is unpredictable

Free

Free

Alloc

Alloc

16 bytes

24 bytes

12bytes

16 bytes

A

B

Quiz: Match that

Address Location
int x;
int main(int argc, char *argv[]) {
int y;
int *z = malloc(sizeof(int)););

}

Address Location

x

main

y

z

*z

Possible segments: static data, code, stack, heap

Static data

Code

Stack

Stack

Heap

What if no static data segment?

 Code

Memory Accesses

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int x;
x = x + 3;

}

otool -tv demo1.o
(or objdump on Linux)

0x10: movl0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl%edi, 0x8(%rbp)

%rbp is the base pointer:

points to base of current stack frame

Quiz: Memory Accesses?

0x10: movl0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl%edi, 0x8(%rbp)

Fetch instruction at addr 0x10
Exec:

load from addr 0x208

Fetch instruction at addr 0x13
Exec:

no memory access

Fetch instruction at addr 0x19
Exec:

store to addr 0x208

Initial %rip = 0x10

%rbp = 0x200

%rbp is the base pointer:

points to base of current stack frame

%rip is instruction pointer (or program counter)

Memory Accesses to what addresses?

How to Virtualize Memory?

Problem: How to run multiple processes simultaneously?

Addresses are “hardcoded” into process binaries

How to avoid collisions?

Possible Solutions for Mechanisms (covered today):

1. Time Sharing

2. Static Relocation

3. Base

4. Base+Bounds

5. Segmentation

1) Time Sharing of Memory

Try similar approach to how OS virtualizes CPU

Observation:

OS gives illusion of many virtual CPUs by saving CPU registers to memory

when a process isn’t running

Could give illusion of many virtual memories by saving memory to disk when

process isn’t running

code

data

Program

Memory

Time Share Memory: Example

code

data

Program

Memory

code

data

heap

stack

Process 1

create

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data2

heap2

stack2

Process 2

create

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data2

heap2

stack2

Process 2

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data2

heap2

stack2

Process 2

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data2

heap2

stack2

Process 2

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data2

heap2

stack2

Process 2

code

data

Program

Memory

code

data

heap

stack

Process 1

code

data2

heap2

stack2

Process 2

Problems with

Time Sharing Memory

Problem: Ridiculously poor performance

Better Alternative: space sharing

• At same time, space of memory is divided across processes

Remainder of solutions all use space sharing

2) Static Relocation

• Idea: OS rewrites each program before loading it as a process in memory

• Each rewrite for different process uses different addresses and pointers

• Change jumps, loads of static data

• 0x10: movl 0x8(%rbp), %edi
• 0x13: addl $0x3, %edi
• 0x19: movl %edi, 0x8(%rbp)

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010:movl 0x8(%rbp), %edi
0x3013:addl $0x3, %edi
0x3019:movl %edi, 0x8(%rbp)

rewrite

rewrite

(free)

Program Code

stack

Heap

(free)

Program Code

stack

Heap

(free)

(free)

(free)

4 KB

8 KB

12 KB

16 KB

process 1

process 2

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010: movl 0x8(%rbp), %edi
0x3013: addl $0x3, %edi
0x3019: movl %edi, 0x8(%rbp)

Static: Layout in Memory

Static Relocation:

Disadvantages

No protection

• Process can destroy OS or other processes

• No privacy

Cannot move address space after it has been placed

• May not be able to allocate new process

3) Dynamic Relocation

Goal: Protect processes from one another

Requires hardware support
• Memory Management Unit (MMU)

MMU dynamically changes process address at every memory reference
• Process generates logical or virtual addresses (in their address space)

• Memory hardware uses physical or real addresses

CPU MMU

Memory

Process runs here OS can control MMU

Logical address
Physical address

Hardware Support for

Dynamic Relocation

Two operating modes

• Privileged (protected, kernel) mode: OS runs

• When enter OS (trap, system calls, interrupts, exceptions)

• Allows certain instructions to be executed

• Can manipulate contents of MMU

• Allows OS to access all of physical memory

• User mode: User processes run

• Perform translation of logical address to physical address

Minimal MMU contains base register for translation

• base: start location for address space

Implementation of

Dynamic Relocation: BASE REG
Translation on every memory access of user process

• MMU adds base register to logical address to form physical address

base moderegisters
32 bits 1 bit

mode

=

user?

no

yes

+

base

logical

address

physical

address

MMU

Dynamic Relocation with

Base Register

Idea: translate virtual addresses to physical by adding a fixed offset each time.

Store offset in base register

Each process has different value in base register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

same code

VISUAL Example of DYNAMIC RELOCATION:

BASE REGISTER

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 is running

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P2 is running

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1

Virtual Physical

(Decimal notation)

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

(1024 + 100)

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1 (4096 + 100)

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5196, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5196, R1

P1: load 100, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5196, R1

P1: load 1000, R1 load 2024, R1

Quiz: Who Controls the

Base Register?

What entity should do translation of addresses with base register?

(1) process, (2) OS, or (3) HW

What entity should modify the base register?

(1) process, (2) OS, or (3) HW

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5196, R1

P1: load 100, R1 load 2024, R1

Can P2 hurt P1?

Can P1 hurt P2?

How well does dynamic relocation do with base register for protection?

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5196, R1

P1: load 100, R1 load 2024, R1

Can P2 hurt P1?

Can P1 hurt P2?

P1: store 3072, R1 store 4096, R1 (3072 + 1024)

How well does dynamic relocation do with base register for protection?

4) Dynamic with Base+Bounds

• Idea: limit the address space with a bounds register

• Base register: smallest physical addr (or starting location)

• Bounds register: size of this process’s virtual address space

• Sometimes defined as largest physical address (base + size)

• OS kills process if process loads/stores beyond bounds

Implementation of

BASE+BOUNDS
Translation on every memory access of user process

• MMU compares logical address to bounds register

• if logical address is greater, then generate error

• MMU adds base register to logical address to form physical address

base modeboundsregisters
32 bits 32 bits 1 bit

mode

=

user?

<

bounds?

no

no

yes

yes +

base

error

logical

address

physical

address

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 is running
bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P2 is running

base register

bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5196, R1

P1: load 100, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5196, R1

P1: load 100, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1 interrupt OS! 3072 > 1024

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5196, R1

P1: load 100, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1 interrupt OS!

Managing Processes

with Base and Bounds

Context-switch
• Add base and bounds registers to PCB

• Steps

• Change to privileged mode

• Save base and bounds registers of old process

• Load base and bounds registers of new process

• Change to user mode and jump to new process

What if don’t change base and bounds registers when switch?

Protection requirement
• User process cannot change base and bounds registers

• User process cannot change to privileged mode

Base and Bounds

Advantages
Advantages

• Provides protection (both read and write) across address spaces

• Supports dynamic relocation

• Can place process at different locations initially and also move address spaces

• Simple, inexpensive implementation

• Few registers, little logic in MMU

• Fast

• Add and compare in parallel

base modeboundsregisters
32 bits 32 bits 1 bit

mode

=

user?

<

bounds?

no

no

yes

yes +

base

error

logical

address

physical

address

Base and Bounds

DISADVANTAGES

Disadvantages

• Each process must be allocated contiguously in physical memory

• Must allocate memory that may not be used by process

• No partial sharing: Cannot share limited parts of address space

Stack

Code

Heap

0

2n-1

5) Segmentation

Divide address space into logical segments

• Each segment corresponds to logical entity in address space

• code, stack, heap

Each segment can independently:

• be placed separately in physical memory

• grow and shrink

• be protected (separate read/write/execute protection bits)

Stack

Code

Heap

0

2n-1

Segmented Addressing

Process now specifies segment and offset within segment

How does process designate a particular segment?

• Use part of logical address

• Top bits of logical address select segment

• Low bits of logical address select offset within segment

What if small address space, not enough bits?

• Implicitly by type of memory reference

• Special registers

Segmentation

Implementation

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x000 0 0

MMU contains Segment Table (per process)
• Each segment has own base and bounds, protection bits

• Example: 14 bit logical address, 4 segments; how many bits for segment? How many bits for offset?

remember:
1 hex digit->4 bits

Quiz: Address Translations

with Segmentation

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x000 0 0

MMU contains Segment Table (per process)
• Each segment has own base and bounds, protection bits

• Example: 14 bit logical address, 4 segments; how many bits for segment? How many bits for offset?

Translate logical addresses (in hex) to physical addresses
0x0240:

0x1108:

0x265c:

0x3002:

remember:
1 hex digit->4 bits

heap (seg1)

stack (seg2)
0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

load 0x2010, R1

Virtual (hex) Physical

Segment numbers:

0: code+data

1: heap

2: stack

Visual Interpretation

heap (seg1)

stack (seg2)

load 0x2010, R1

Virtual (hex) Physical

0x1600 + 0x010 = 0x1610

Segment numbers:

0: code+data

1: heap

2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

heap (seg1)

stack (seg2)

load 0x2010, R1

Virtual (hex) Physical

load 0x1010, R1

Segment numbers:

0: code+data

1: heap

2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x1600 + 0x010 = 0x1610

heap (seg1)

stack (seg2)

load 0x2010, R1

Virtual (hex) Physical

load 0x1010, R1 0x400 + 0x010 = 0x410

Segment numbers:

0: code+data

1: heap

2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x1600 + 0x010 = 0x1610

heap (seg1)

stack (seg2)

load 0x2010, R1

Virtual Physical

load 0x1010, R1

load 0x1100, R1

Segment numbers:

0: code+data

1: heap

2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x400 + 0x010 = 0x410

0x1600 + 0x010 = 0x1610

heap (seg1)

stack (seg2)

load 0x2010, R1

Virtual Physical

load 0x1010, R1

load 0x1100, R1 0x400 + 0x100 = 0x500

Segment numbers:

0: code+data

1: heap

2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x400 + 0x010 = 0x410

0x1600 + 0x010 = 0x1610

Advantages of

Segmentation

• Enables sparse allocation of address space

• Stack and heap can grow independently

• Heap: If no data on free list, dynamic memory allocator requests more from OS (e.g.,
UNIX: malloc calls sbrk())

• Stack: OS recognizes reference outside legal segment, extends stack implicitly

• Different protection for different segments

• Read-only status for code

• Enables sharing of selected segments

• Supports dynamic relocation of each segment

Stack

Code

Heap

Disadvantages of

Segmentation

Each segment must be allocated contiguously

• May not have sufficient physical memory for large segments

Fix in next lecture with paging…

Conclusion

HW+OS work together to virtualize memory

• Give illusion of private address space to each process

Add MMU registers for base+bounds so translation is fast

• OS not involved with every address translation, only on context switch or errors

Dynamic relocation with segments is good building block

• Next lecture: Solve fragmentation with paging

